Introduktion till ARIMA: nonseasonal modeller ARIMA (p, d, q) prognoser ekvation: ARIMA-modeller är i teorin den vanligaste klassen av modeller för prognoser för en tidsserie som kan göras för att vara 8220stationary8221 genom differentiering (om nödvändigt), kanske i samband med olinjära transformationer, såsom loggning eller avflöde (om nödvändigt). En slumpmässig variabel som är en tidsserie är stationär om dess statistiska egenskaper är konstanta över tiden. En stationär serie har ingen trend, dess variationer kring dess medelvärde har en konstant amplitud, och det vinklar på ett konsekvent sätt. d. v.s. dess kortsiktiga slumpmässiga tidsmönster ser alltid ut i statistisk mening. Det sistnämnda tillståndet betyder att dess autokorrelationer (korrelationer med sina egna tidigare avvikelser från medelvärdet) förblir konstanta över tiden, eller likvärdigt, att dess effektspektrum förblir konstant över tiden. En slumpmässig variabel i denna blankett kan ses som en kombination av signal och brus, och signalen (om en är uppenbar) kan vara ett mönster av snabb eller långsam mean reversion eller sinusformig oscillation eller snabb växling i tecken , och det kan också ha en säsongskomponent. En ARIMA-modell kan ses som en 8220filter8221 som försöker separera signalen från bruset, och signalen extrapoleras därefter i framtiden för att få prognoser. ARIMA-prognosekvationen för en stationär tidsserie är en linjär (d. v.s. regressionstyp) ekvation där prediktorerna består av lags av de beroende variabla andorlagren av prognosfel. Det vill säga: Förutsatt värdet på Y är en konstant och en viktad summa av ett eller flera nya värden av Y och eller en vägd summa av ett eller flera nya värden av felen. Om prediktorerna endast består av fördröjda värden på Y. Det är en ren autoregressiv (8220self-regressed8221) modell, som bara är ett speciellt fall av en regressionsmodell och som kan förses med standard regressionsprogram. Exempelvis är en första-order-autoregressiv (8220AR (1) 8221) modell för Y en enkel regressionsmodell där den oberoende variabeln bara Y är försenad med en period (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Om en del av prediktorerna är felaktiga, är en ARIMA-modell inte en linjär regressionsmodell, eftersom det inte går att ange 8220last period8217s error8221 som en oberoende variabel: felen måste beräknas periodvis när modellen är monterad på data. Tekniskt sett är problemet med att använda fördröjda fel som prediktorer att modellen8217s förutsägelser inte är linjära funktioner för koefficienterna. även om de är linjära funktioner i tidigare data. Så koefficienter i ARIMA-modeller som innehåller försenade fel måste uppskattas genom olinjära optimeringsmetoder (8220hill-climbing8221) istället för att bara lösa ett system av ekvationer. Akronymet ARIMA står för Auto-Regressive Integrated Moving Average. Lags av den stationära serien i prognosen ekvationen kallas quotautoregressivequot termer, lags av prognosfel kallas quotmoving averagequot termer och en tidsserie som behöver differentieras för att göras stationär sägs vara en quotintegratedquot-version av en stationär serie. Slumpmässiga och slumpmässiga modeller, autoregressiva modeller och exponentiella utjämningsmodeller är alla speciella fall av ARIMA-modeller. En nonseasonal ARIMA-modell klassificeras som en quotARIMA (p, d, q) kvotmodell där: p är antalet autoregressiva termer, d är antalet icke-säsongsskillnader som behövs för stationaritet och q är antalet fördröjda prognosfel i prediksionsekvationen. Prognosekvationen är konstruerad enligt följande. Först, låt y beteckna d: s skillnad på Y. Det betyder: Observera att den andra skillnaden i Y (d2-fallet) inte är skillnaden från 2 perioder sedan. Det är snarare den första skillnaden-av-första skillnaden. vilken är den diskreta analogen av ett andra derivat, dvs den lokala accelerationen av serien i stället för dess lokala trend. När det gäller y. Den allmänna prognostiseringsekvationen är: Här definieras de rörliga genomsnittsparametrarna (9528217s) så att deras tecken är negativa i ekvationen, enligt konventionen införd av Box och Jenkins. Vissa författare och programvara (inklusive R-programmeringsspråket) definierar dem så att de har plustecken istället. När faktiska siffror är anslutna till ekvationen finns det ingen tvetydighet, men det är viktigt att veta vilken konvention din programvara använder när du läser utmatningen. Ofta anges parametrarna av AR (1), AR (2), 8230 och MA (1), MA (2), 8230 etc. För att identifiera lämplig ARIMA-modell för Y. börjar du med att bestämma sorteringsordningen (d) behöver stationera serierna och ta bort säsongens bruttoegenskaper, kanske i kombination med en variationsstabiliserande transformation, såsom loggning eller avflöde. Om du slutar vid denna tidpunkt och förutsäger att den olika serien är konstant, har du bara monterat en slumpmässig promenad eller slumpmässig trendmodell. Den stationära serien kan emellertid fortfarande ha autokorrelerade fel, vilket tyder på att vissa antal AR-termer (p 8805 1) och eller några nummer MA-termer (q 8805 1) också behövs i prognosekvationen. Processen att bestämma värdena p, d och q som är bäst för en given tidsserie kommer att diskuteras i senare avsnitt av anteckningarna (vars länkar finns längst upp på denna sida), men en förhandsvisning av några av de typerna av nonseasonal ARIMA-modeller som vanligtvis förekommer ges nedan. ARIMA (1,0,0) första ordningens autoregressiva modell: Om serien är stationär och autokorrelerad kanske den kan förutsägas som en multipel av sitt eget tidigare värde plus en konstant. Prognosekvationen i detta fall är 8230, som Y är regresserad i sig själv fördröjd med en period. Detta är en 8220ARIMA (1,0,0) constant8221 modell. Om medelvärdet av Y är noll, skulle den konstanta termen inte inkluderas. Om lutningskoefficienten 981 1 är positiv och mindre än 1 i storleksordningen (den måste vara mindre än 1 i storleksordningen om Y är stillastående), beskriver modellen medelåterkallande beteende där nästa period8217s värde bör förutses vara 981 1 gånger som långt ifrån medelvärdet som detta period8217s värde. Om 981 1 är negativ förutspår det medelåterkallande beteende med teckenväxling, dvs det förutspår också att Y kommer att ligga under den genomsnittliga nästa perioden om den är över medelvärdet denna period. I en andra-ordningsautoregressiv modell (ARIMA (2,0,0)) skulle det finnas en Y t-2 term till höger också, och så vidare. Beroende på tecken och storheter på koefficienterna kan en ARIMA (2,0,0) modell beskriva ett system vars medföljande reversering sker på ett sinusformigt oscillerande sätt, som en massans rörelse på en fjäder som utsätts för slumpmässiga stötar . ARIMA (0,1,0) slumpmässig promenad: Om serien Y inte är stillastående är den enklaste möjliga modellen för en slumpmässig promenadmodell, vilken kan betraktas som ett begränsande fall av en AR (1) - modell där den autogegrativa koefficienten är lika med 1, dvs en serie med oändligt långsam medelbackning. Förutsägningsekvationen för denna modell kan skrivas som: där den konstanta termen är den genomsnittliga period-till-period-förändringen (dvs. den långsiktiga driften) i Y. Denna modell kan monteras som en icke-avlyssningsregressionsmodell där första skillnaden i Y är den beroende variabeln. Eftersom den innehåller (endast) en nonseasonal skillnad och en konstant term, klassificeras den som en quotARIMA (0,1,0) modell med constant. quot. Den slumpmässiga walk-without-drift-modellen skulle vara en ARIMA (0,1, 0) modell utan konstant ARIMA (1,1,0) annorlunda första ordningens autoregressiva modell: Om fel i en slumpmässig promenadmodell är autokorrelerade kanske problemet kan lösas genom att lägga en lag av den beroende variabeln till prediktionsekvationen - - ie genom att regressera den första skillnaden av Y på sig själv fördröjd med en period. Detta skulle ge följande förutsägelsesekvation: som kan omordnas till Detta är en första-orders autregressiv modell med en ordning av icke-säsongsskillnader och en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) utan konstant enkel exponentiell utjämning: En annan strategi för korrigering av autokorrelerade fel i en slumpmässig promenadmodell föreslås av den enkla exponentiella utjämningsmodellen. Minns att för några icke-stationära tidsserier (t ex de som uppvisar bullriga fluktuationer kring ett långsamt varierande medelvärde), utförs slumpmässiga promenadmodellen inte lika bra som ett glidande medelvärde av tidigare värden. Med andra ord, istället för att ta den senaste observationen som prognosen för nästa observation, är det bättre att använda ett genomsnitt av de sista observationerna för att filtrera bort bullret och mer exakt uppskatta det lokala medelvärdet. Den enkla exponentiella utjämningsmodellen använder ett exponentiellt vägt glidande medelvärde av tidigare värden för att uppnå denna effekt. Förutsägningsekvationen för den enkla exponentiella utjämningsmodellen kan skrivas i ett antal matematiskt ekvivalenta former. varav den ena är den så kallade 8220error correction8221-formen, där den föregående prognosen justeras i riktning mot det fel som det gjorde: Eftersom e t-1 Y t-1 - 374 t-1 per definition kan det skrivas om som : vilket är en ARIMA (0,1,1) - utan konstant prognosekvation med 952 1 1 - 945. Det innebär att du kan passa en enkel exponentiell utjämning genom att ange den som en ARIMA (0,1,1) modell utan konstant, och den uppskattade MA (1) - koefficienten motsvarar 1-minus-alfa i SES-formeln. Minns att i SES-modellen är den genomsnittliga åldern för data i prognoserna för 1-tiden framåt 1 945. Det betyder att de tenderar att ligga bakom trender eller vändpunkter med cirka 1 945 perioder. Det följer att den genomsnittliga åldern för data i de 1-prognos framåt av en ARIMA (0,1,1) utan konstant modell är 1 (1 - 952 1). Så, till exempel, om 952 1 0,8 är medelåldern 5. När 952 1 närmar sig 1 blir ARIMA (0,1,1) utan konstant modell ett mycket långsiktigt rörligt medelvärde och som 952 1 närmar sig 0 blir det en slumpmässig promenad utan driftmodell. What8217s det bästa sättet att korrigera för autokorrelation: Lägga till AR-termer eller lägga till MA-termer I de tidigare två modellerna som diskuterats ovan fixades problemet med autokorrelerade fel i en slumpmässig promenadmodell på två olika sätt: genom att lägga till ett fördröjt värde av de olika serierna till ekvationen eller lägga till ett fördröjt värde av prognosfelet. Vilket tillvägagångssätt är bäst En tumregel för denna situation, som kommer att diskuteras mer i detalj senare, är att positiv autokorrelation vanligtvis behandlas bäst genom att addera en AR-term till modellen och negativ autokorrelation behandlas vanligtvis bäst genom att lägga till en MA term. I affärs - och ekonomiska tidsserier uppstår negativ autokorrelation ofta som en artefakt av differentiering. (I allmänhet minskar differentieringen positiv autokorrelation och kan även orsaka en växling från positiv till negativ autokorrelation.) Således används ARIMA (0,1,1) - modellen, i vilken skillnad åtföljs av en MA-term, oftare än en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel exponentiell utjämning med tillväxt: Genom att implementera SES-modellen som en ARIMA-modell får du viss flexibilitet. För det första får den uppskattade MA (1) - koefficienten vara negativ. Detta motsvarar en utjämningsfaktor som är större än 1 i en SES-modell, vilket vanligtvis inte är tillåtet med SES-modellproceduren. För det andra har du möjlighet att inkludera en konstant term i ARIMA-modellen om du vill, för att uppskatta en genomsnittlig trendfri noll. ARIMA-modellen (0,1,1) med konstant har förutsägelsesekvationen: Prognoserna från den här modellen är kvalitativt likartade som i SES-modellen, förutom att banan för de långsiktiga prognoserna typiskt är en sluttande linje (vars lutning är lika med mu) snarare än en horisontell linje. ARIMA (0,2,1) eller (0,2,2) utan konstant linjär exponentiell utjämning: Linjära exponentiella utjämningsmodeller är ARIMA-modeller som använder två icke-säsongsskillnader i samband med MA-termer. Den andra skillnaden i en serie Y är inte bara skillnaden mellan Y och sig själv i två perioder, men det är snarare den första skillnaden i den första skillnaden, dvs. Y-förändringen i Y vid period t. Således är den andra skillnaden av Y vid period t lika med (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En andra skillnad av en diskret funktion är analog med ett andra derivat av en kontinuerlig funktion: det mäter kvotccelerationquot eller quotcurvaturequot i funktionen vid en given tidpunkt. ARIMA-modellen (0,2,2) utan konstant förutspår att den andra skillnaden i serien motsvarar en linjär funktion av de två sista prognosfel: som kan omordnas som: där 952 1 och 952 2 är MA (1) och MA (2) koefficienter. Detta är en generell linjär exponentiell utjämningsmodell. väsentligen samma som Holt8217s modell, och Brown8217s modell är ett speciellt fall. Den använder exponentiellt vägda glidande medelvärden för att uppskatta både en lokal nivå och en lokal trend i serien. De långsiktiga prognoserna från denna modell konvergerar till en rak linje vars lutning beror på den genomsnittliga trenden som observerats mot slutet av serien. ARIMA (1,1,2) utan konstant dämpad trend linjär exponentiell utjämning. Denna modell illustreras i de bifogade bilderna på ARIMA-modellerna. Den extrapolerar den lokala trenden i slutet av serien men plattar ut på längre prognoshorisonter för att presentera en konservatismskampanj, en övning som har empiriskt stöd. Se artikeln om varför Damped Trend worksquot av Gardner och McKenzie och artikeln "Rulequot Rulequot" av Armstrong et al. för detaljer. Det är i allmänhet lämpligt att hålla fast vid modeller där minst en av p och q inte är större än 1, dvs försök inte passa en modell som ARIMA (2,1,2), eftersom det här sannolikt kommer att leda till övermontering och quotcommon-factorquot-problem som diskuteras närmare i noterna om den matematiska strukturen för ARIMA-modeller. Implementering av kalkylark: ARIMA-modeller som de som beskrivs ovan är enkla att implementera på ett kalkylblad. Förutsägningsekvationen är helt enkelt en linjär ekvation som refererar till tidigare värden av ursprungliga tidsserier och tidigare värden av felen. Således kan du ställa in ett ARIMA-prognoskalkylblad genom att lagra data i kolumn A, prognosformeln i kolumn B och felen (data minus prognoser) i kolumn C. Förutsättningsformeln i en typisk cell i kolumn B skulle helt enkelt vara ett linjärt uttryck som hänvisar till värdena i föregående rader av kolumnerna A och C multiplicerat med lämpliga AR - eller MA-koefficienter lagrade i celler på annat håll på kalkylbladet. Allmänt: Antal eller kvantitet som är mellanliggande (mellanliggande) flera mängder och tal. Se även allmänt. Allmän försäkring: Medelfristen betyder att om försäkringsbeloppet vid förlusten är mindre än försäkringsvärdet av försäkrade egendom. Det belopp som fordras enligt policyn kommer att minskas i proportion till underförsäkringen. Kallas också genomsnittsklausul. Se även samförsäkring. Marinförsäkring: Medelvärde betyder delvis (förlust) särskild genomsnittlig förlust bärs av en part. och allmänt genomsnittlig förlust delas av alla berörda. Nu ersätts i stor utsträckning med institutets lastklausuler A, B eller C. Quality control: Mest vanliga uttryck för centreringen av en fördelning beräknad genom att dividera de totala observerade värdena med antalet observationer. Dow Jones Industrial Average (DJIA), som mäter Utförandet av bestånden på 30 de största amerikanska företagen är ett välkänt exempel. Den genomsnittliga åldern på vilken människor blir föräldrar verkar bli högre, eftersom mer tonvikt läggs på att skapa karriärer innan man börjar familjer. Höjden på den genomsnittliga amerikanska hane är ca 57, medan höjden på den japanska medeltiden är 56. Den genomsnittliga amerikanska hushållet innehåller vanligtvis ett gift par och minst två barn som alla bor i samma hus. Avkastning på investeringar (ROI) Flytta genomsnittliga och exponentiella utjämningsmodeller Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga promenadmodeller och linjära trendmodeller, nonseasonal mönster och trender extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt (lokalt) medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-without-drift-modellen. Samma strategi kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medelvärde kallas ofta en quotsmoothedquot-version av den ursprungliga serien, eftersom kortsiktig medelvärde har en effekt att utjämna stötarna i originalserien. Genom att justera graden av utjämning (bredden på glidande medelvärdet) kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är. Enkelt (lika viktat) Flyttande medelvärde: Prognosen för värdet på Y vid tiden t1 som görs vid tid t motsvarar det enkla medelvärdet av de senaste m-observationerna: (Här och på annat håll använder jag symbolen 8220Y-hat8221 för att stå för en prognos av tidsserie Y som gjordes så tidigt som möjligt enligt en given modell.) Detta medel är centrerat vid period-t (m1) 2, vilket innebär att uppskattningen av det lokala medelvärdet tenderar att ligga bakom den sanna värdet av det lokala medelvärdet med ca (m1) 2 perioder. Således säger vi att medelåldern för data i det enkla glidande medlet är (m1) 2 i förhållande till den period för vilken prognosen beräknas: det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data . Om du till exempel medger de senaste 5 värdena, kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m1 är den enkla glidande genomsnittsmodellen (SMA) motsvarar den slumpmässiga gångmodellen (utan tillväxt). Om m är mycket stor (jämförbar med längden på uppskattningsperioden), motsvarar SMA-modellen den genomsnittliga modellen. Precis som med vilken parameter som helst av en prognosmodell, är det vanligt att justera värdet på k för att få den bästa kvotkvoten till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar utgöra slumpmässiga fluktuationer runt ett långsamt varierande medelvärde. Först kan vi försöka passa den med en slumpmässig promenadmodell, vilket motsvarar ett enkelt glidande medelvärde på 1 term: Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därmed väljer den mycket av kvotenhetskvoten i data (de slumpmässiga fluktuationerna) samt quotsignalquot (det lokala medelvärdet). Om vi istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser: Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga promenadmodellen i det här fallet. Medelåldern för data i denna prognos är 3 ((51) 2), så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. (Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare.) Notera att de långsiktiga prognoserna från SMA-modellen är en horisontell rak linje, precis som i slumpmässig promenad modell. Således antar SMA-modellen att det inte finns någon trend i data. Men medan prognoserna från den slumpmässiga promenadmodellen helt enkelt motsvarar det senast observerade värdet är prognoserna från SMA-modellen lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla glidande genomsnittet blir inte större eftersom prognostiseringshorisonten ökar. Det här är uppenbarligen inte korrekt Tyvärr finns det ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är emellertid inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre tid. Du kan till exempel skapa ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt etc. i det historiska dataprov. Därefter kan du beräkna felfunktionens avvikelser vid varje prognoshorisont och sedan konstruera konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar med lämplig standardavvikelse. Om vi försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt: Medelåldern är nu 5 perioder (91) 2). Om vi tar ett 19-årigt glidande medel ökar medeltiden till 10: Observera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-siktsmedel: Modell C, det 5-åriga glidande genomsnittet, ger det lägsta värdet av RMSE med en liten marginal över 3 term och medellång sikt, och deras andra statistik är nästan identiska. Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer lyhördhet eller lite mer jämnhet i prognoserna. (Return to top of page.) Browns Enkel exponentiell utjämning (exponentiellt viktad glidande medelvärde) Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de sista k-observationerna lika och fullständigt ignorerar alla föregående observationer. Intuitivt bör tidigare data diskonteras på ett mer gradvis sätt - till exempel bör den senaste observationen få lite mer vikt än 2: a senast, och den 2: a senaste bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämningens (SES) - modellen åstadkommer detta. Låt 945 beteckna en quotsmoothing constantquot (ett tal mellan 0 och 1). Ett sätt att skriva modellen är att definiera en serie L som representerar den nuvarande nivån (dvs lokal medelvärde) för serien som uppskattad från data fram till idag. Värdet på L vid tid t beräknas rekursivt från sitt eget tidigare värde så här: Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där 945 styr närheten av det interpolerade värdet till det senaste observation. Prognosen för nästa period är helt enkelt det nuvarande utjämnade värdet: Likvärdigt kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner. I den första versionen är prognosen en interpolation mellan föregående prognos och tidigare observation: I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel av 945. Är felet gjort vid tid t. I den tredje versionen är prognosen ett exponentiellt vägt (dvs. rabatterat) glidande medelvärde med rabattfaktor 1-945: Interpolationsversionen av prognosformuläret är det enklaste att använda om du genomför modellen på ett kalkylblad: det passar in i en encell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet 945 lagras. Observera att om 945 1 motsvarar SES-modellen en slumpmässig gångmodell (utan tillväxt). Om 945 0 motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet. (Återgå till början av sidan.) Medelåldern för data i prognosen för enkel exponentiell utjämning är 1 945 i förhållande till den period som prognosen beräknas för. (Detta är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie.) Den enkla, snabba genomsnittliga prognosen tenderar därför att ligga bakom vändpunkter med cirka 1 945 perioder. Till exempel, när 945 0,5 är fördröjningen 2 perioder när 945 0,2 är fördröjningen 5 perioder när 945 0,1 är fördröjningen 10 perioder, och så vidare. För en given genomsnittlig ålder (dvs mängden fördröjning) är prognosen för enkel exponentiell utjämning (SES) något överlägsen SMA-prognosen (Simple Moving Average) eftersom den lägger relativt större vikt vid den senaste observationen, dvs. det är något mer quotresponsivequot för förändringar som inträffade under det senaste förflutna. Exempelvis har en SMA-modell med 9 villkor och en SES-modell med 945 0,2 båda en genomsnittlig ålder på 5 för data i sina prognoser, men SES-modellen lägger mer vikt på de sista 3 värdena än SMA-modellen och vid Samtidigt gör det inte helt 8220forget8221 om värden som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som kontinuerligt varierar, så att den lätt kan optimeras genom att använda en kvotsolverquot-algoritm för att minimera det genomsnittliga kvadratfelet. Det optimala värdet på 945 i SES-modellen för denna serie visar sig vara 0,2961, som visas här: Medelåldern för data i denna prognos är 10,2961 3,4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är en horisontell rak linje. som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt. Observera dock att de konfidensintervaller som beräknas av Statgraphics avviker nu på ett rimligt sätt, och att de är väsentligt smalare än konfidensintervallen för slumpmässig promenadmodell. SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell. så ger den statistiska teorin om ARIMA-modeller en bra grund för beräkning av konfidensintervall för SES-modellen. I synnerhet är en SES-modell en ARIMA-modell med en icke-säsongsskillnad, en MA (1) term och ingen konstant term. annars känd som en quotARIMA (0,1,1) modell utan constantquot. MA (1) - koefficienten i ARIMA-modellen motsvarar kvantiteten 1-945 i SES-modellen. Om du till exempel passar en ARIMA (0,1,1) modell utan konstant till serien som analyseras här, visar den uppskattade MA (1) - koefficienten sig att vara 0.7029, vilket är nästan exakt en minus 0,2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. För att göra detta, ange bara en ARIMA-modell med en icke-sekundär skillnad och en MA (1) term med en konstant, dvs en ARIMA (0,1,1) modell med konstant. De långsiktiga prognoserna kommer då att ha en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Det går inte att göra detta i samband med säsongjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan emellertid lägga till en konstant långsiktig exponentiell trend till en enkel exponentiell utjämningsmodell (med eller utan säsongsjustering) genom att använda inflationsjusteringsalternativet i prognosproceduren. Den lämpliga quotinflationen (procentuell tillväxt) per period kan beräknas som lutningskoefficienten i en linjär trendmodell som är anpassad till data i samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter . (Återgå till början av sidan.) Browns Linear (ie double) Exponentiell utjämning SMA-modellerna och SES-modellerna antar att det inte finns någon trend av något slag i data (vilket vanligtvis är OK eller åtminstone inte för dåligt för 1- stegprognoser när data är relativt bullriga), och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en växande tillväxt eller ett cykliskt mönster som står klart mot bruset, och om det finns behov av att prognostisera mer än en period framåt, kan uppskattningen av en lokal trend också vara en fråga. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning (LES) - modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trendmodellen är Browns linjära exponentiell utjämningsmodell, som använder två olika slätmade serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centra. (En mer sofistikerad version av denna modell, Holt8217s, diskuteras nedan.) Den algebraiska formen av Brown8217s linjär exponentiell utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men likvärdiga former. Den här kvotens kvotstandardkvot uttrycks vanligtvis enligt följande: Låt S beteckna den singeljämnade serien som erhållits genom att använda enkel exponentiell utjämning till serie Y. Dvs, värdet på S vid period t ges av: (Minns att, under enkel exponentiell utjämning, detta skulle vara prognosen för Y vid period t1.) Låt sedan Squot beteckna den dubbelsidiga serien erhållen genom att applicera enkel exponentiell utjämning (med samma 945) till serie S: Slutligen prognosen för Y tk. för vilken kgt1 som helst, ges av: Detta ger e 1 0 (det vill säga lura lite och låt den första prognosen motsvara den faktiska första observationen) och e 2 Y 2 8211 Y 1. varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden som formeln baserad på S och S om de senare startades med användning av S1S1Y1. Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Holt8217s linjär exponentiell utjämning Brown8217s LES-modell beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer in en begränsning av de datamönster som den kan passa: nivån och trenden får inte variera till oberoende priser. Holt8217s LES-modell adresserar problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst t, som i Brown8217s modell, finns det en uppskattning L t på lokal nivå och en uppskattning T t av den lokala trenden. Här rekryteras de rekursivt från värdet av Y observerat vid tid t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som applicerar exponentiell utjämning till dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L t82091 och T t-1. respektive prognosen för Y tshy som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1. När det verkliga värdet observeras beräknas den uppdaterade uppskattningen av nivån rekursivt genom interpolering mellan Y tshy och dess prognos L t-1 T t 1 med vikter av 945 och 1- 945. Förändringen i beräknad nivå, nämligen L t 8209 L t82091. kan tolkas som en bullrig mätning av trenden vid tiden t. Den uppdaterade uppskattningen av trenden beräknas sedan rekursivt genom interpolering mellan L t 8209 L t82091 och den tidigare uppskattningen av trenden T t-1. Användning av vikter av 946 och 1-946: Tolkningen av trendutjämningskonstanten 946 är analog med den för nivåutjämningskonstanten 945. Modeller med små värden av 946 förutsätter att trenden ändras endast mycket långsamt över tiden, medan modeller med större 946 antar att det förändras snabbare. En modell med en stor 946 tror att den avlägsna framtiden är väldigt osäker, eftersom fel i trendberäkning blir ganska viktiga vid prognoser mer än en period framåt. (Återgå till början av sidan.) Utjämningskonstanterna 945 och 946 kan beräknas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 945 0.3048 och 946 0.008. Det mycket lilla värdet av 946 innebär att modellen antar mycket liten förändring i trenden från en period till nästa, så i grunden försöker denna modell att uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används för att uppskatta den lokala nivån i serien, är medelåldern för de data som används för att uppskatta den lokala trenden proportionell mot 1 946, men inte exakt lika med den . I detta fall visar det sig att vara 10.006 125. Detta är ett mycket exakt nummer eftersom precisionen av uppskattningen av 946 är verkligen 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så denna modell är medeltal över ganska mycket historia för att beräkna trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som beräknas i SEStrend-modellen. Det uppskattade värdet på 945 är också nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend, så det är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som beräknas beräkna en lokal trend. Om du 8220eyeball8221 ser det här, ser det ut som om den lokala trenden har vänt sig nedåt i slutet av serien. Vad har hänt Parametrarna i denna modell har uppskattats genom att minimera det kvadrerade felet i 1-stegs-prognoser, inte längre prognoser, i vilket fall trenden gör inte en stor skillnad. Om allt du tittar på är 1 steg framåt, ser du inte den större bilden av trender över (säg) 10 eller 20 perioder. För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den använder en kortare baslinje för trendberäkning. Om vi till exempel väljer att ställa in 946 0,1, är medelåldern för de data som används vid uppskattning av den lokala trenden 10 perioder, vilket innebär att vi medeltar trenden över de senaste 20 perioderna eller så. Here8217s vad prognosplottet ser ut om vi sätter 946 0,1 samtidigt som ni håller 945 0.3. Detta ser intuitivt rimligt ut för denna serie, men det är troligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad sägs om felstatistik Här är en modelljämförelse för de två modellerna ovan och tre SES-modeller. Det optimala värdet på 945. För SES-modellen är ungefär 0,3, men liknande resultat (med något mer eller mindre responsivitet) erhålls med 0,5 och 0,2. (A) Hål linjär exp. utjämning med alfa 0,3048 och beta 0,008 (B) Hål linjär exp. utjämning med alfa 0,3 och beta 0,1 (C) Enkel exponentiell utjämning med alfa 0,5 (D) Enkel exponentiell utjämning med alfa 0,3 (E) Enkel exponentiell utjämning med alfa 0,2 Deras statistik är nästan identisk, så vi kan verkligen göra valet på grundval av prognosfel i 1 steg före proverna. Vi måste falla tillbaka på andra överväganden. Om vi starkt tror att det är vettigt att basera den nuvarande trendberäkningen på vad som hänt under de senaste 20 perioderna eller så kan vi göra ett ärende för LES-modellen med 945 0,3 och 946 0,1. Om vi vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna vara enklare att förklara och skulle också ge fler mitten av vägtrafikprognoserna för de kommande 5 eller 10 perioderna. (Tillbaka till början av sidan.) Vilken typ av trend-extrapolation är bäst: Horisontell eller linjär Empiriska bevis tyder på att om uppgifterna redan har justerats (om det behövs) för inflationen, kan det vara osäkert att extrapolera kortsiktiga linjära trender mycket långt in i framtiden. Tendenser som uppenbaras idag kan sänkas i framtiden på grund av olika orsaker som produktförstörelse, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Av denna anledning utför enkel exponentiell utjämning ofta bättre utom provet än vad som annars skulle kunna förväntas, trots sin kvotiv kvot horisontell trend extrapolering. Dämpade trendmodifieringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i sina trendprognoser. Den demoniserade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA-modell (1,1,2). Det är möjligt att beräkna konfidensintervaller kring långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller. (Var försiktig: inte alla mjukvaror beräknar konfidensintervall för dessa modeller korrekt.) Bredden på konfidensintervallet beror på (i) modellens RMS-fel, (ii) utjämningstypen (enkel eller linjär) (iii) värdet (er) av utjämningskonstanten (erna) och (iv) antalet perioder framåt du prognoserar. I allmänhet sprids intervallet snabbare, eftersom 945 blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används. Detta ämne diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. (Återgå till början av sidan.)
No comments:
Post a Comment